Task/Subtask 1V02.1
CDRL Sequence A014-006
17 January 1995

SOFTWARE TECHNOLOGY FOR ADAPTABLE, RELIABLE
SYSTEMS (STARS) PROGRAM

Technical Papers:
Integrating a SEE for Megaprogramming:
Lessons Learned

Contract No. F19628-93-C-0129
Task IV02 — Megaprogramming Transition Support

Prepared for:

Electronic Systems Center
Air Force Materiel Command, USAF
Hanscom AFB, MA 01731-2116

Prepared by:

Loral Federal Systems
700 North Frederick Avenue

19950403 137

Cleared for Public Release, Distribution is Unlimited

Task/Subtask IvV02.1
CDRL Sequence A014-006
17 January 1995

SOFTWARE TECHNOLOGY FOR ADAPTABLE, RELIABLE
SYSTEMS (STARS) PROGRAM

Technical Papers:

Integrating a SEE for Megaprogramming:
Lessons Learned

Contract No. F19628-93—-C-0129
Task IV02 — Megaprogramming Transition Support

Accesion For

Prepared for: NTIS CRA& %
DTIC TAB
Electronic Systems Center Unannounced 0

Air Force Materiel Command, USAF Justification

Hanscom AFB, MA 01731-2116

By
Distribution |
Availability Codes
Avail and
Prepared by: Dist vaépeagiall o
Loral Federal Systems ﬂ_ /
700 North Frederick Avenue

Gaithersburg, MD 20879

Form Approved

REPORT DOCUMENTION PAGE OMB No. 0704-0188

Pubiic reporting burden for this collection of information is estimated to averago 1 hour including the time { iewing instructi hing extsting data sources, gathering and
maintaining the data needed, and completing and revi ez the collecti W's':p:‘“ it nrggardn";tht: burden estimate or any other aspedt of this collection of information,
including suggestions for reducing this burden to Washi Head, Someos Di for k ions and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington,
VA 22202-4302, and to the Office of Management and Budget Papomork Reduction Project (0704-0188) thngton DC 20503.
1. AGENCY USE ONLY (Leave Blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED
1/17/95 Informal Technical Report
4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

Integrating a SEE for Megaprogramming: Lessons Learned
F19628-93-C-0129

6. AUTHOR(S)
Dr. Richard L. Randall, Robert K. Ekman, and Gary S. Turner

of Loral Federal Systems - Gaithersburg; and
Captain Scott Kent, USAF

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
REPORT NUMBER
Loral Federal Systems

700 North Frederick Avenue

Gaithersburg, MD 20879 A014-006

9. SPONSORING/MON!TORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING
Electronic Systems Center/ENS AGENCY REPORT NUMBER
Air Force Materiel Command
5 Eglin Street, Building 1704
Hanscom Air Force Base, MA 01731-2116

11. SUPPLEMENTARY NOTES

N/A

12a. DISTRIBUTION/AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Cleared for Public Release, ﬁistribution is Unlimited

13. ABSTRACT (Maximum 200 word's)

The objective of megaprogramming technology is to make possible a software
product-line organization - one that can produce related systems cheaper,

better, and faster by using a methodical process based on a common architectural
approach. To apply such state-of-the-art technology, a product-line organization
needs a common Software Engineering Environment (SEE) that is itself a result of
product-line engineering. This paper describes how megaprogramming principles
are being applied to assemble and integrate the SEE for one of the three STARS
Demonstration Projects. It provides practicle lesson learned - some hard-won —
that should be useful to organizations planning their own SEE integration efforts,
particularly for organizations considering a transition to megaprogramming.

14. SUBJECT TERMS 15. NUMBER OF PAGES
60
software engineering environments (SEE), megaprogramming, STARS, 16 PRICE CODE
integration, process N/A
17. SECURITY CLASSIFICATION | 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT
OF REPORT OF THIS PAGE OF ABSTRACT
Unclassified Unclassified Unclassified SAR

Preface

This document was developed by the Loral Federal Systems - Gaithersburg, located at 700 North
Frederick Avenue, Gaithersburg, MD 20879. Questions or comments should be directed to Dr.
Richard L. Randall at 719-554-6597 (Internet: randallr@ Ifs.loral.com).

This document is approved for release under Distribution “A” of the Scientific and Technical
Information Program Classification Scheme (DoD Directive 5230.24).

The contents of this document constitutes technical information developed for internal Government
use. The Government does not guarantee the accuracy of the contents and does not sponsor the
release to third parties whether engaged in performance of a Government contract or subcontract
or otherwise. The Government further disallows any kability for damages incurred as the result of
the dissemination of this information.

Presenters: Dr. Richard Randall, Robert Ekman, Capt. Scott Kent, Gary Turner

Title: Integrating a SEE for Megaprogramming: Lessons Learned
Track: Track 11 - Software Engineering Environments

Day: Tuesday, April 11

Keywords: Software Engineering Environments, SEEs, Megaprogramming,
STARS, Integration, Process

INTEGRATING A SEE FOR MEGAPROGRAMMING:
LESSONS LEARNED

1. INTRODUCTION

The objective of megaprogramming is to make possible a software product-
line organization - one that can produce related systems cheaper, better, and faster
by using a methodical process based on a common architectural approach. The
STARS program has been building up a technological basis for megaprogramming
for many years, and is now transitioning this technology to practice. To effectively ap-
ply such state-of-the-art technology, a product-line organization needs a common
Software Engineering Environment (SEE) that is itself a result of product-line engi-
neering. To use STARS megaprogramming terminology, the SEE must emphasize
domain-specific reuse and support a systematic SEE process with extensive auto-
mation.

This paper describes how megaprogramming principles are being applied to
assemble and integrate the SEE for one of the three STARS Demonstration Projects.
It provides practical lessons learned - some hard-won - that should be useful to or-
ganizations planning their own SEE integration efforts, particularly for organizations
considering a transition to megaprogramming.

The paper is organized as follows:

o Section 2, Context, provides background on the STARS Program and
the Air Force/STARS Demonstration Project, which provided the experi-
ence for this report.

° Section 3, Demonstration Project SEE, describes the Demonstration
Project SEE and provides a brief history of SEE assembly and integra-
tion.

° Section 4, Lessons Learned, summarizes the lessons learned to date
on the Demonstration Project, and elaborates selected lessons in more
depth.

o Section 5, Megaprogramming and SEE Integration, reflects upon the
above experience, tying together the topics of Megaprogramming and
SEE Integration.

o Section 6, Conclusion, summarizes the key points of this paper.

2. CONTEXT

2.1 THE STARS PROGRAM

The ARPA STARS program is a technology development, integration and tran-
sition program to demonstrate a process-driven, domain specific reuse-based ap-
proach to software engineering that is supported by appropriate tool and environment
technology - an approach referred to as “megaprogramming”.

2.1.1 Megaprogramming

Megaprogramming is a product-line (family of systems) approach to the crea-
tion and maintenance of software intensive systems. It is characterized by the reuse
of software life-cycle assets within a product-line including common architecture,
models and components. Megaprogramming also includes the definition and en-
actment of disciplined processes for the development of applications and the evolu-
tion of the product-line as a whole. Finally, megaprogramming calls for automated
support for the process via advanced software engineering environment (SEE) tools
and integration among those tools.

STARS has three technology thrusts that it views as essential for megapro-
gramming:

o Domain-Specific Reuse - STARS contends that high-payoff reuse is
best achieved on software “product-lines”, where a coherent architec-
tural approach can be used for all of the applications. The product-line
will typically be managed by a single individual who will assure that
adequate engineering is performed at the domain level.

. Systematic Process - In addition to a common architectural approach,
a common process framework is needed so that the engineering of
each application in the product-line is performed with proper attention to
commonality and quality.

o Automated Support - To support the above two thrusts, STARS seeks
to bring the best available SEE tools and integration technology to bear.

For a more in-depth introduction to the STARS program and the notions of
megaprogramming, please refer to [Trimble94].

2.1.2 Demonstration Projects

The STARS program mission is to accelerate the transition to the megapro-
gramming paradigm. Key vehicles for bringing this about are the three STARS Dem-
onstration Projects - one with each of the three services (Air Force, Amy, and Navy) -
which are applying the principles of megaprogramming to the development of DoD
systems. Each STARS Demonstration Project is documenting qualitative and quan-
titative experience about the benefits and costs of megaprogramming, as well as the
effectiveness of specific tools and techniques. This experience is to be used to initi-
ate the transition of megaprogramming practices to each Demonstration Project’s
parent organization. “

2.2 THE AIR FORCE/STARS DEMONSTRATION PROJECT

In 1992 Air Force Space Command’s (AFSPC) Space and Warning System
Center (SWSC)' won the bid for the Air Force’s STARS Demonstration Pro;ect The
SWSC is responsible for the maintenance and evolution of software for the C? cen-
ters at the Cheyenne Mountain Air Force Station (CMAS) - which have the mission for
national attack warning/assessment and space surveillance/defense/control. A large
number of mission-critical systems are involved, with a high annual maintenance

cost.

The SWSC, determined to apply new software technologies to reduce mainte-
nance costs, had already been working to build up a megaprogramming capability;
and the partnership with STARS was a natural way to accelerate the transition.

The Demonstration Project application being developed is the Space Com-
mand and Control Architectural Infrastructure (SCAl) System, which will be a mobile

space control capability.

1
Effective Februrary, 1995, the SWSC is transfering to the Air Force Materiel Command (AFMC) and will be known as the Space and
Waming Systems Directorate (SWSD).

Table 1 provides a summary of the progress to date on the project - in terms of
the three STARS megaprogramming technology thrusts.

Original SWSC Posture

Accomplishments since Establishing
STARS Partnership

Domain-
Specific
Reuse

+ Strong architecture,
based on Reusable
Integrated Command
Center (RICC) archi-
tectural infrastructure

s Strong emphasis on
Open Systems, com-
mercial tools

e Domain models un-
derway

¢ Commitment to Ada

Demonstrated viability of architectural ap-
proach

Defined tailored specification standard based
on Cleanroom, MIL-STD 498, and others

Completed object-based application models;
specified SCAIl system and first two SCAI re-
leases

Developed and tested SCAI Release 1

leases 2; specifying Re-
lease 3

Refining product-ine ar-
chitectural framework

Continuing to develop

Activities in Progress
(as of 1/95)
Developing SCAI Re-
domain models

Systematic
Process

e Understanding of im-
portance of process

¢ SWSC Software Engi-
neering Process
Group (SEPG) estab-
lished

¢ Semi-formal process
definition in selected
areas

¢ Corporate Information
Management (CIM)
IDEF model underway

Instituted formal approach to process definition,
based on STARS/SEI collaboration

Created a product-ine process architecture

Integrated OO, Cleanroom, and the Ada Proc-
ess Model methods

Formally defined processes for Application En-
gineering (AE)

Launched a major mefrics initiative

Automated staff hour and defect metrics collec-
tion

process

Beginning formal defini-
tion of Domain Engi-
neering process

Working on second
round of AE specification
process

Using automated proc-
ess modeling and en-
actment support for

Nearing completion of
formal definition of CM
SCAlRelease 2 and 3

Automated
Support

¢ Commitment to Ra-
tional Ada support
product-ine

¢ Commitment to Uni-
versal Network Ar-
chitecture Services
(UNAS), and RICC
for Architectural Infra-
structure

Integrated a state-of-the-art open systems SEE:
IBM and Sun platforms, Rational and TRW
toolsets

Installed advanced process support toolset; en-
coded and began automated enactment of SCAI
Release 2 and 3 processes

Instituted automated tracking capability for
problems, action items, etc.

Began use of Rational SoDA for automated

document production

ity and integration of the
process tools

Applying Amadeus to
automate collection of
SEE usage metrics

Extending process auto-
mation across geo-

Enhancing the functional-
graphical locations

Table 1. Demonstration Project - Megaprogramming Progress and Status

3. DEMONSTRATION PROJECT SEE

3.1 SEE COMPOSITION

The Demonstration Project SEE is composed of approximately 50 worksta-
tions connected to 3 server-class machines. It is about evenly divided between Sun
and [BM Unix-based platforms. The network is distributed across two geographical
sites and operates with restricted, classified access.

The SEE is populated with an integrated set of tools to support end-user func-
tionality, as depicted in Figure 1. In this diagram, we cite only end-user tools, but
there are many “infrastructure” facilities, such as relational database management
systems (Sybase and Oracle are both used on the SCAI SEE).

RICC Tools :
SALE

Rose
Teamwork/IM

toolSET_certify

Framemaker [
SoDA

Mail
Framemaker
Sun Tools

Amadeus [
PEAKS

IBM CMVC

Rational CMVC
E ProjectCatalyst

Process Weaver

CAT/Compass
PEAKS

Figure 1. Demonstration Project SEE: Functionality Groups

Table 2 identifies the supplier of each tool shown in Figure 1. As shown, the
SWSC has selected Rational and TRW as major toolset providers for the Demon-
stration Project. Also shown in the table are four tools that have been developed with
STARS support.

Type | Tool Name | Vendor/Developer | Purpose
Rational Ada Development Toolset
Apex Rational Code creation and testing
RCI Rational Interfaces Apex with other Ada compil-
ers
Rose Rational Object oriented analysis and design
SoDA Rational Automated document generation
VADS Rationa! Verdix compiler
TRW Architectural Infrastructure Support Toolset
RICC Tools TRW Application display, message, and da-
tabase definition
SALE TRW Application network definition (used
with UNAS)
UNAS TRW Application network manager
STARS-Supported Tools
Amadeus Amadeus Software Research, | Metrics repository and analysis
Inc.
PEAKS Cedar Creek Process Engi- Process modeling, planning, and plan
neering (ccPE) simulation
ProjectCatalyst Software Engineering Tech- | Low-level process definition and proc-
nology (SET) ess execution
toolSET certify SET Cleanroom certification testing support
Other Tools
CAT/Compass Robbins-Gioia Project management
CMVC IBM Configuration management and track-
ing system
FrameMaker Frame Technology, Inc. Documentation and publication
ProDAT Embedded Computer Re- IDEF-oriented process definition
source Support Improvement
Program (ESIP), managed by
Sacramento/ALC
Process Weaver Cap Gemini America Process workflow manager
SunTools Sun General office support
Teamwork/IM Cadre Technologies Information modeling

Table 2. Demonstration Project SEE Tool Suppliers

The integration of the SEE tools is accomplished through a combination of
techniques and mechanisms. Control integration (tool invocation and communica-
tion) is provided by

. IBM AIX SDE WorkBench/6000 broadcast messaging service, the Proc-
ess Weaver message service, operating system process services, and
TCP/IP sockets. The WorkBench and operating system process control
provided local service within a user's machine session. Process
Weaver and TCP/IP provided service between users and between ma-
chines.

. Data integration is provided by the Oracle Relational Database Man-
agement System (RDBMS) and the operating system file system.

. Presentation and user interface integration is provided by the X Window
System and the Motif window manager.

o Process integration is provided by the STARS-sponsored Process Sup-
port Environment toolset: PEAKS, ProjectCatalyst (in conjunction with
Process Weaver).

3.2 HISTORY

The Demonstration Project began in 1992 and is scheduled to complete in
1995. The first year, the Preparation Phase, was intended to lay the groundwork for
the final two years, the Performance Phase. This paper was written just after the first
year of the Performance Phase.

3.2.1 Preparation Phase (11/92-10/93)

Early in 1993, a joint team of Loral STARS and AF engineers was established
to handle the SCAI SEE. During the Preparation Phase, the team developed an initial
overall SEE integration strategy, documented in Version 2.0 of the SCAlI Demonstra-
tion Project Management Plan (SDPMP).

The SCAI project planned to simultaneously develop several key aspects of its
overall approach. Early decisions had to be made about SEE composition prior to
detailed understanding of the process the SEE was to support. The key early deci-
sions were to use IBM workstations, Rational Ada development software, and TRW
domain-specific support software. The SWSC - committed to the use of Ada for the
application product-line - selected the Rational Ada development toolset as a key part
of the SEE. The application architectural strategy is based on a TRW-originated ar-
chitectural infrastructure, and the SWSC has adopted the corresponding TRW toolset
as another key part of the SEE. In addition, the Air Force decided to sponsor en-
hancements to the TRW toolset, and movement continued towards commercializa-
tion.

A major new focus for the SCAI project was process support technology. Both
the SWSC and STARS organizations were committed to improving the processes
used on the SCAI project - and jointly decided to explore the emerging technologies
of process modeling, project process management, process execution, and auto-
mated metrics collection. It was decided to proceed with development of the Loral
STARS Process Support Environment (PSE) toolset during the Preparation Phase
and into the Performance Phase. The PSE was designed to provide advanced proc-
ess modeling, planning and execution capability.

During the Preparation Phase, the SEE hardware and software was delivered
in two major installments and integrated with the existing Sun workstations. The SEE
was used primarily to develop system and software engineering models that cap-
tured domain understanding and laid the groundwork for the SCAI specification effort.

3.2.2 First Year of the Performance Phase (11/93-10/94)

During the first year of the Performance Phase, the team planned and ordered
the third and final major SEE installment. Due to changes in STARS funding, the in-
stallation was delayed significantly, and though originally planned for April 1994, it
was not installed until October. The impact of this delay was to reduce the team's
productivity somewhat, although adjusted work patterns and interim SEE assets
helped offset this impact. The STARS PSE toolset, also delivered later than originally
anticipated, was used for the SCAIl Release 2 work. During this period, experience
with the SEE was used to define a major update to the PSE, which is now being used
for SCAI Release 3 work.

At the start of the Performance Phase, several tools were still under evaluation,
including IBM CMVC, Amadeus, the STARS PSE toolset, SoDA, and ProDAT. The
primary means of evaluating these tools was to conduct pilots. Based on pilot usage,
all of the tools were accepted for use. The pilots took unanticipated labor, especially
the PSE.

SEE integration activity during this period resulted in improvements to the PSE
(elaborated later in this paper), configuration management, documentation produc-
tion, metrics, and overall engineering database analysis.

At the project level, there were substantial adjustments to the approach and to
the process - necessitating adjustments to SEE strategy, design and implementa-
tion.

3.3 PRAGMATIC FACTORS

The following is a recap of some of the constraints, considerations and other
practical factors that affected the establishment of the SEE.

. The AF and each of their contractors had an installed base of software
with which they were familiar. The selection of the SCAl SEE products
required significant consensus efforts to enhance this existing base.

o The SEE included diverse products from many vendors, requiring di-
verse integration strategies. Some tools were part of single-vendor
toolsets, however, lessening the need for integration.

J The combined team (Air Force, Air Force contractors, and Loral) worked
in different locations and different time zones. For the first two years of
the project, these groups were forced to use segregated SEEs. More
recently a link was established between the two primary project loca-
tions. The geographical separation also impeded the Loral team's abil-
ity to support SEE activities.

o The application is classified, which required the SEE to be classified as
well - compounding the factors cited in the preceding point.

o Several products (e.g., process support tools) had release and devel-
opment delays. The products were less mature than expected. in addi-

tion, because of the need for advanced tools, the Air Force conducted
several Beta test and pilot evaluation activities.

Products and prices changed during the selection and acquisition pe-
riod. Budgets and plans required several adjustments. In addition,
STARS funding delays required shifting some acquisitions into late
1994, and funding reductions required reduction in SEE scope and
function.

3.4 ACCOMPLISHMENTS

SEE Engineering: The team piloted and adopted several new tools
(Amadeus, IBM CMVC, PSE, SoDA, ProDAT). The first release of the
PSE was completed and delivered. The team gathered usage experi-
ence and scheduled a major PSE upgrade (completed in late 1994 and
now in use). A prototype integration between IBM CMVC and Rational
CMVC was built. An artifact database study was completed, laying the
groundwork for improvements to overall SEE data integration. The team
instituted the use of IBM CMVC for general purpose tracking (problems,
action items, etc.).

Process Support: The team applied the PSE to SCAIl Release 2, which
provided usage experience leading to a major PSE upgrade. The team
began using the ESIP-sponsored ProDAT tool to support process defi-
nition, and they began using Amadeus for labor metrics collection.

Domain/Application Engineering Support: The team began applying
state-of-the art tools for SCAIl engineering work, including Rational Rose
(object-oriented domain/application modeling), RICC Tools
(architectural infrastructure development), and Rational Apex (Ada de-
sign/development).

SEE Improvement Process: Two user surveys were conducted which
provided valuable input to the overall development of the SEE. IBM
CMVC is now being used to support SEE improvement procedures
once handled manually. This includes support for:

- System management work order processing,
- SEE product problem/enhancement tracking, and

- Commercial tool vendor feedback (partially implemented proc-
ess).

SEE Technology Transition: To perform technology transition, the team
conducted classes and pilots to introduce new tools. They conducted
presentations and demonstrations of the SEE to the SWSC and to out-
side organizations.

Team Connectivity: Progress has been slow in creating useful elec-
tronic team connectivity. This is largely due to logistical problems asso-
ciated with adding new outside connections into the classified enclo-
sure within the SWSC. Connectivity with one prime contractor, Kaman

Sciences, was achieved by physically relocating the personnel. Con-
nectivity with another prime contractor, TRW, was achieved by imple-
menting a secure link to their facility. The project has coped well with the
limitations - e.g., software development productivity has exceeded ex-
pectations for the SCAI Release 1 effort - but it is clear that overall syn-
ergy could have been better if all project personnel had been linked on a
common SEE from the outset.

4. LESSONS LEARNED

4.1 OVERVIEW

The lessons learned presented in this paper are based on a more complete
set of SEE lessons documented in the Draft Version 2.0 of the Air Force/STARS
Demonstration Project Experience Report [DemExp95]. Table 3 itemizes lessons
from the Experience Report that are particularly relevant to the two focus areas ad-
dressed by this paper: megaprogramming and integration. Since space does not
permit treatment of all of the lessons in Table 3, we have chosen a subset for more
discussion in Section 4.2, Elaboration of Selected Lessons Learned - the lesson
numbers are provided in the “Lesson #” column of the table.

The table also cross-references each lesson as to its relevance to the three
megaprogramming technology thrusts: domain-specific reuse, systematic process,
and automated support (see Section 2.1.1, on page 2, for a definition of these cate-
gories). These designations in this table refer to how reuse, process and automation
apply to the SEE itself.

The lessons are grouped into the following life-cycle activities:

) Domain Engineering - developing a strategy for the family of SEEs that
will support a product-line organization.
. SEE Management - managing the administrative and engineering ac-

tivities for a SEE, with emphasis on aspects present when providing a
SEE for a significantly new way of doing business - such as megapro-

gramming.

o SEE Architecture - engineering a common architecture for a SEE prod-
uct-line.

o Platform and Tool Selection - selecting hardware, networking and
software tools for a new SEE.

o SEE Integration - combining the functions of the SEE so that there is re-
duced end-user perception of the SEE’s individual components.

o SEE Improvement - gathering information about the SEE’s functions,
performance, maintainability, etc., and pursuing needed improvements.

o Technology Transition - transitioning new SEE approaches and tech-

niques to SEE engineers and end-users.

Megaprogramming

Relevance
o 9|8
Lesson 2 ‘%] § E
Category Brief Lesson Statement S S 18 ok
L @ el =
Domain Engi-fA product -line mentality, complete with domain engineering, is appropriate | 1 X X X
neering for the SEE product line
Establish a focal point SEE organization for the entire SEE product line 21 X X
SEE Man- |Managing change in the domain of the SEE is a key challenge for organiza-{ 3 X
lagement tions transitioning to megaprogramming
Stringent security requirements represent a significant hurdle to SEE as- X
sembly and integration
A project should place early priority on intra-and inter-project communica- X
tion and coordination
SEE engineering "bandwidth" will be impacted by a surprising amount of 4 X
non-technical work
A SEE “czar" is required for effective management of the SEE activity 5 X
ISEE Archi- |SEE architecture must be developed incrementally 6] X X
tecture
Platform Heterogeneous open-systems platforms can provide an important degree ofj 7 | X X
and Tool flexibility
Selection
A project must be judicious about the number of new tools X
A project should be cautious about committing to tools still under develop- X X
ment
Pilots are an important vehicle for both tool selection and tool usage 8 X X
SEE Integra- [Logistical factors, such as delays in shipment, nuances in licensing, etc., X
tion can significantly complicate SEE assembly and integration
Upgrades to an operating system (or other SEE infrastructure components) | 9 X
can disrupt integration
High-payoff integration can result from selecting a vendor whose toolset 10 X
evolution objectives align with your organization’s goals
IAcquiring a single vendor toolset is usually more cost-effective than inte- 1 X
igrating separate tools
Maintaining process information in multiple forms poses a significant main- | 12 X X
tenance challenge
Artifact management (notably configuration management) is a centrai inte- [13| X X
ration issue
%se of BMS messaging services required unanticipated engineering effort | 14 X
to provide guaranteed message delivery
A Process Support Environment can provide an effective SEE integration | 151 X X X
Jayer
SEE Im- Medium-to-large projects need a SEE-supported problem tracking system X X
rovement
r Management of the SEE can be enhanced via an automated tracking tool X X
A project can use an automated tracking tool as the basis for systematic X X
feedback to vendors about their products.
Process-driven databases are a good basis for metrics 16 X X
Periodic SEE surveys are essential to the organization’s SEE improvement | 17 X
cycle
Tech Transi- [The wide variety of new approaches and tools introduced on a new SEE X
tion necessitates a substantial investment in technology transition

Ta

ble 3. Summary of Lessons Learned

4.2 ELABORATION OF SELECTED LESSONS LEARNED

4.2.1 Domain Engineering Lessons

“Domain engineering” refers to the identification and disciplined exploitation of
commonality across a family of related systems - and is a major emphasis in a me-
gaprogramming organization. A key objective of the Demonstration Project is to es-
tablish a domain engineering baseline for the SWSC product-line - models, common
architectural framework, similar processes, strategic tools, efc., that will allow future
applications in the product-line to be built using the same methodology.

We are now of the belief that the SEE which supports the development of the
product-line applications actually constitutes a product-line of its own. Accordingly,
this subsection supplies two observations about the applicability of domain engi-
neering principles to the SEE.

Lesson 1. A product-line mentality, complete with domain engineering, is appro-
priate for the SEE product line.

The development of an architecture for a product-line SEE requires a prod-
uct-line mentality for the SEE itself - complete with SEE domain engineer-
ing.

This objective - to support the future SWSC product-line requirements - has
led to SEE thought processes that are analogous to SCAI application do-
main thought processes. Upon reflection, this is entirely appropriate. In the
future application product-line organization, there will be multiple logical
SEEs - one for each application being developed. These SEEs will share
many common hardware and software assets, but each project will have a
unique view of these assets - which will guide instantiation and augmenta-
tion activities to produce its own tailored realization of the SEE.

The requirements for these SEEs are dictated by the organization’s com-
mon process (the same process framework, but tailored realizations) and
the common application construction methodology (same architectural ap-
proach, but some tailoring in each application instantiation). Thus, to deliver
end-user functionality “cheaper, better, faster” to the product-line organiza-
tion, SEE engineers must perform domain engineering of the SEE domain.

Looking back over the experience to-date with the SCAl SEE (and its fore-
runners at the SWSC prior to the Demonstration Project), it is clear that do-
main engineering thought processes have influenced the acquisitions and
integrations that have led to our current SEE.

This lesson provides the main theme for this paper, and it is discussed in
some detail in Section 5, Megaprogramming and SEE Integration, starting
on page 24.

Lesson 2. Establish a focal point SEE organization for the entire SEE product line.

A product-line organization should establish a focal point SEE organization
responsible for both SEE engineering and SEE management for the entire
product-line. Having an organization responsible for the SEE product-line
ensures that the SEEs are managed as a product line and that product line
activities (such as domain analysis) are done. The SWSC Software Engi-
neering Process Group established an Integrated Process Team (IPT) to
address the proliferation of SEE tools across the SWSC directorates, and in
doing so acknowledged the problem of “stovepipes™ within the SEE do-
main. As the SWSC moves toward a product-line way of doing business for
its end-user applications, it will need to move to a SEE product-line to sup-
port it.

4.2.2 SEE Management Lessons

Lesson 3. Managing change in the domain of the SEE is a key challenge for or-
ganizations transitioning to megaprogramming.

For most organizations, transitioning to megaprogramming represents sig-
nificant change - with corresponding pressure on the SEE to change to
support the new ways of doing business. Well-intended visionaries will
seek the latest tools and technologies - which is justifiable, since there are
many gaps in proven tooling for megaprogramming (support for domain
engineering, integrated process definition and enactment, architecture-
directed program generation, etc.).

However, such changes bring management headaches as well - such as
the following, all of which have been encountered on the Demonstration
Project:

e Planning uncertainty - due to such factors as slipped delivery dates and
integration mismatches;

e SEE instability - due to the newness of the tools, including the possibility
that a tool must ultimately be thrown out;

¢ SEE technology transition issues - due to such factors as paradigm
mismatches, extensive need to train users, and the possible need to
adapt current processes to take advantage of new tool capabilities.

There is no formula for judging where to draw the line, but here are some
weapons in the manager’s arsenal:

e A SEE engineering staff that includes someone with extensive experi-
ence with assembling and integrating SEEs - preferably with some bat-
tle scars with respect to the pitfalls of new tools;

¢ Piloting (see also lesson 8); and

2
“Stovepipe” systems are systems that are developed independently, with no intent to share architecture or information except at external
interfaces.

¢ Common sense.
The main point is to be aware that change itself is a key SEE challenge.

Lesson 4. SEE Engineering “bandwidth” will be impacted by a surprising amount
of non-technical work.

An organization changing to a significantly new way of doing business (such
as megaprogramming) must address a challenging mix of technical and
non-technical SEE issues, with a surprisingly large percentage of this effort
going to non-technical issues. Further, because the non-technical issues
constrain the engineering solution, proportionately less engineering band-
width is available to address technical issues.

In our case, SEE engineering was complicated by such non-technical fac-
tors as:

e The degree of change (cited in the prior lesson);
» The continuing evolution of the processes to be supported by the SEE;
e Significant changes in budget and timing;

o The geographical separation of personnel (initially, three major contrac-
tors were located at different locations - although this is becoming less
of a problem, since the team is being consolidated in one location); and

e The classified nature of the SCAI application (this necessitated the SEE
to be classified - which in turn degraded external electronic communica-
tion and diminished the ability of off-site personnel to support the proj-
ect).

Lesson 5. A SEE “czar” is required for effective management of the SEE activity.

In the face of the inevitable uncertainty in requirements, and the need for
long lead times for acquisition and meaningful integration, appointing a
qualified SEE “czar” early in the program is necessary. This lead person will
be a single point of responsibility for the project's SEE and will coordinate
both SEE engineering and planning, making it easier to force certain strate-
gic decisions early - despite the inevitable lack of complete information.

Some key SEE issues that should be addressed early are

e Artifact definition and management, especially configuration manage-
ment;

 Project-wide tracking support (problems, issues, action items, etc.); and

e Metrics instrumentation strategy.

15

It is also essential to have an experienced lead engineer devoted to such
engineering functions as SEE architecture, tool selection guidance, integra-
tion, etc. Due to the criticality of the SEE to achievement of megaprogram-
ming objectives, management should attempt to insulate this engineer from
the host of non-technical problems that are sure to occur (discussed
above). The conventional approach is to treat the SEE as an acquisition and
maintenance problem; thus, the engineering aspects of the SEE tend to lag.

4.2.3 SEE Architecture Lessons
Lesson 6. SEE architecture must be developed incrementally.

An outside consultant cannot present an organization with a pre-integrated
SEE to satisfy product-line objectives. There are too many variations; and
too much needs to be customized.

At the start of the Preparation Phase (10/92), it was thought that Loral, on
behalf of STARS, would provide an off-the-shelf SEE that would be fully inte-
grated by the start of the Performance Phase (10/93). In retrospect, this was
naive.

The design of the SEE is predicated on a clear statement of the require-
ments, namely the automation requirements to support the application
product-line. These requirements, in turn, are dependent on the organiza-
tion’s understanding of its process. In the case of the Demonstration Proj-
ect, some aspects of the basic approach were still being worked out at the
beginning of the Performance Phase - let alone the process.

Thus, by the end of the Preparation Phase, Loral and the Air Force were
able to cite one of the major lessons learned thus far on the Demonstration
Project - one that transcends the SEE: All aspects of the product-line ap-
proach - domain models, process, application architecture, and in par-
ticular the SEE - must be built-up incrementally. An incremental, iterative
approach is necessary since the organization will be simultaneously grap-
pling with fundamental approach issues - delaying the availability of firm
SEE requirements.

This principle is recognized by [Brown92], who argues for “evolutionary ap-
proaches, rather then revolutionary”.

4.2.4 Platform and Tool Selection Lessons

Lesson 7. Heterogeneous open-systems platforms can provide an important de-
gree of flexibility.

The SCAIl SEE includes both Sun and IBM RISC System/6000 platforms.
The Suns were part of the existing SEE before the Demonstration Project,
but the project decided to complete the SEE with IBM platforms and to net-
work the Suns and IBMs together. Although the two platforms cannot run
each others’ binaries, it is commonplace to network their file systems to-
gether and to remotely execute applications via XWindow/Motif.

Although having the two platform types meant that maintenance and system
management was more complicated, the project has realized some im-
portant benefits. New tools and new versions of tools are often released on
one platform (usually the Sun) and then ported to others - and there can be
quite a bit of time between ports. The project has thus been able to take
early advantage of new releases of several tools during this period, includ-
ing Rational ROSE and Rational SoDA. It has also been able to take ad-
vantage of tools that run only on one platform, such as the STARS PSE (IBM
platform), and ProDAT (Sun).

Thus, the additional flexibility provided by heterogeneous platforms can at
least partially offset the additional maintenance overhead.

Lesson 8. Pilots are an important vehicle for both tool selection and tool usage.

If there is no past experience with a tool, the best method of in-depth
evaluation is to conduct a pilot. The purposes of the pilot are twofold: not
only to determine whether to accept the tool, but also to learn how best to
use the tool and how to best integrate it into the SEE. The pilot must be
based on realistic usage scenarios. The best pilots are essentially precur-
sor production usages on non-critical path activities. On the SCAI project,
we piloted Amadeus, IBM CMVC, the STARS Process Support Environment
(PSE) toolset, and ProDAT.

4.2.5 SEE Integration Lessons

Lesson 9. Upgrades to an operating system (or other SEE infrastructural com-
ponents) can disrupt integration.

[n an integrated SEE, many of the tools will depend on particular versions of
other tools (or parts of the SEE), so that upgrades cannot take place in iso-
lation. Rather, upgrades have to be coordinated with one another. Infras-
tructural tools (such as operating systems or data bases) have many de-
pendencies, so special care must be taken when planning an upgrade to
them. Some upgrades may have to be delayed until dependent tools can be
upgraded. Code may even have to be written to temporarily mitigate the ef-
fect of upgrades. We recommend building a tool dependency matrix, to bet-
ter understand the impact of proposed upgrades.

Lesson 10. High-payoff integration can result from selecting a vendor whose
toolset evolution objectives align with your organization’s goals.

Two examples of how this strategy has paid off for the Demonstration Proj-
ect are the Rational toolset (Apex, ROSE, SoDA), and the TRW toolset
(UNAS, SALE, and the RICC toolsa). In both cases, the Demonstration Proj-
ect organization had already established confidence in the vendors, and
their toolsets were already on a path that matched the needs of the SWSC
product-line objectives. In the case of Rational, the project is committed to
Ada (supported by Apex), OO modeling (supported by ROSE) and docu-
mentation automation (supported by SoDA). In the case of TRW, the project
is committed to the underlying architectural infrastructure supported by the
TRW toolset. The Air Force choice to use these vendors’ solutions for the
Demonstration Project has worked out well, since both have since pursued
a vigorous product improvement cycle, including progressively higher de-
grees of integration.

Lesson 11. Acquiring a single vendor toolset is usually more cost-effective than
integrating separate tools.

The foregoing discussion of the Rational and TRW toolsets illustrates that
off-the-shelf integration has worked quite well for this organization. Although
there has been relatively little home-grown integration to date, experience
suggests that the following advantages and drawbacks should be weighed:

¢ Advantages of off-the-shelf integration:

- Your organization will require less maintenance labor/expertise
in-house.

- The fewer vendors to deal with, the less logistics hassles; the
fewer vendors, the less glue. Integration complexity increases as
the number of tools/vendors increases.

- The vendor takes care of assuring the toolset remains integrated
as components change; whereas if the integration is the respon-
sibility of the local organization, there are considerable head-
aches when one of the integrated components changes.

— With more concentrated investment in a single vendor's product
(as opposed to scattered investment in numerous vendors), you
have more leverage in getting the single vendor to accommodate
your specific requirements.

¢ Drawbacks of off-the-shelf integration:

- You have to accept the vendor’s integration, and you still have to
solve the integration problems with other tools.

- All of the component tools in the integrated toolset have to be up-
dated at once.

3
The TRW Reusable Integration Command Center (RICC) tools are Display Builder and RHMI (both available commercially), Query
Builder and Query Processor (GOTS), and Message Builder and Generic Message Parser (GOTS).

— Sometimes the vendor's plans do not match well with your own
schedule. For example, if an underlying OS or DBMS has to
change, you will have to wait, as we had to, for the vendor’s total
package update, instead of a single component’s update. If you
are doing your own integration, you can swap out a piece
(reasons for swapping: licensing issues, functionality, etc.).

- It may be hard - or even impossible - to integrate a component of
a monolithic integrated toolset with an outside tool. A monolithic
toolset may have missing functionality that must be provided by
another toolset that has overlapping functionality with the first -
resulting in wasted redundant functionality in the SEE. (An ex-
ample of this currently is Rational Apex, which supports version
control but not problem tracking; IBM CMVC, which also supports
version control and problem tracking but does not provide Apex’s
semantic understanding of Ada.)

Lesson 12. Maintaining process information in multiple forms poses a significant
maintenance challenge.

On the SCAI project, process modeling and enactment is split among three
tools. ProDAT supports activity-based modeling, using IDEF notation as a
basis; PEAKS supports workflow modeling and process-driven planning,
using ETVX notation as a basis; and ProjectCatalyst supports workflow exe-
cution and coordination, using task lists and agendas as a basis. Each tool
provides its own independent method for entering and storing its data, and
each supports a different set of process modeling notions. Using all three
tools allows the project to take advantage of the unique capabilities of each
but has the drawback that process information is split and must be man-
aged carefully to keep it synchronized.

The SCAI is grappling with this problem now, and some remedial action is
in progress. First, PEAKS and ProjectCatalyst were already partially inte-
grated and share a common relational database management system for
their data. In addition, both have recently been upgraded to provide better
integration: the ProjectCatalyst view of the process can be instantiated from
the PEAKS view. Second, the potentially voluminous combination of IDEF
diagrams and supporting text is being consolidated into a single database
via ProDAT. Hopefully, these two measures will greatly reduce the mainte-
nance of SCAI process information, which will in turn increase the likelihood
that the processes will actually be enacted in accordance with their defini-
tions - thereby enabling a genuine process improvement cycle.

Lesson 13. Artifact management (notably configuration management) is a cen-
tral integration issue.

Since the SEE’s primary role is to provide the means to create, maintain
and access project artifacts, configuration management is a pre-eminent
SEE integration issue. At the time of this report, CM support on the SEE is
still fragmented. For example, IBM CMVC is in use for many aspects of proj-
ect work (e.g., most problem tracking), and Rational Apex CMVC is in use for
Ada code development (code management only, no problem tracking), but
as of yet, there is no SEE integration between the two - although some pro-
totyping has been conducted to pave the way for future integration.

- There are several reasons why integration lagged in this key area:

« The CM process is only partially defined. There is a high-level IDEF, de-
scription, but the project is still grappling with nuts-and-bolts definition
of artifacts, how they will be constructed and managed, how they will be
delivered from point to point within the process, and how the directories
should be set up on the SEE to support this work. (A complicating factor
is that developing the SCAI's new megaprogramming approach has in-
volved coming to grips with new types of artifacts, combined in new

ways.)

e Several candidate CM tools must be considered, three of which are al-
ready in use on the SCAI (IBM CMVC, Rational CMVC, the State Data
Repository part of ProjectCatalyst), and many more of which are tools
currently in use elsewhere within the SWSC.

e CM-implications of defining a product-line process are not well under-
stood. This is currently an active research topic.

Lesson 14. Use of Broadcast Message Server (BMS) messaging services re-
quired unanticipated engineering effort to provide guaranteed message
delivery.

The integration mechanism within IBM AIX SDE WorkBench - the Broadcast
Message Server (BMS) - is intended for dialog communications, so rela-
tively sophisticated programming is needed on both sides. The way we
programmed the use of WorkBench messaging service did not force the
startup of the receiver of the message. As a consequence, some mes-
sages were undelivered, and integrity of the integration between the tools
was lost. We now understand the requirement for more handshaking and
error checking within the message event loops.

There were other limitations in WorkBench that surfaced during the SEE in-
tegration effort. Communications between tools were supported only within
a single user session. The IBM WorkBench product is an implementation of
the Hewlett-Packard Broadcast Message Server (BMS) technology. We be-
lieve many of the WorkBench limitations were the result of the lagging im-
plementation of BMS improvements.

The emerging standard for SEE integration messaging is found in Sun’s
ToolTalk [ToolTalk94]. This technology is part of the emerging industry
standard referred to as the Common Desktop Environment (CDE). All the
major environment platform vendors (Sun, Hewlett-Packard, IBM, Digital,
and others) have agreed to provide CDE compliant products with their plat-
forms. We believe that future releases of AlX will provide an implementation
of BMS (through ToolTalk) that will ease most of the limitations that we en-

countered.

Lesson 15. A Process Support Environment can provide an effective SEE inte-
gration layer.

[Brown92, p.304] discusses the fundamental role an organization’s process
plays in establishing requirements for a SEE: “Understanding the process
must precede introduction of solutions.” Prior to its affiliation with the Dem-
onstration Project, Loral conducted extensive R&D in the area of process
automation. This work led to the notion of a “process support environment”
(PSE).

The PSE is a set of tools which supports the organization in defining its
process and then using the process as the basis for SEE-assisted plan-
ning and enactment. Experience in developing and using PSEs - including
the recent experience on the Demonstration Project - has led to the view that
it is useful to think of the PSE as an abstract integration layer, which encap-
sulates the organization’s process and exports the SEE’s functionality to the
end-user in the context of the process. This layer is only partially realized to
date, but experience has already shown its potential for implementing proc-
ess-driven SEE integration.

Please refer o a more extensive discussion of the PSE in Section 5.3, ‘A
Key Integration Layer: The Process Support Environment,” on page 27.

Also refer to related lessons 12, 13, and 16.

4.2.6 SEE Improvement Lessons
Lesson 16. Process-driven databases are a good basis for metrics.

Process-driven tools can provide a credible source of measurements to
support metrics, since the measurements are driven by the work itself.

There are two notable examples where this principle is being applied:

¢ Process-driven planning and enactment

ProjectCatalyst tasks are tied to the PEAKS-generated plans - which in
turn are based on the project’s defined process. As tasks are executed
by practitioners, the start and completion dates are automatically posted
to both the ProjectCatalyst and the PEAKS databases. This means that
task leads and managers are provided accurate visibility of work prog-
ress - since milestones are reached only in accordance with the defined
process, complete with prescribed validations.

In addition, as tasks are completed, the SEE gathers task wall-clock
time (automatically) and expended labor statistics (via prompts to the
user). These are also posted to the ProjectCatalyst and PEAKS data-
bases and are available for metrics analysis.

In both cases, the accuracy, timeliness and completeness of the data is
greatly improved by the fact that it is directly tied to the work itself.

Problem and change tracking

The project is using an automated tracking system to track not only
problems but also suggested improvements and work orders - which
are entered into the system as they are conceived. The system tracks
their progress as problems are resolved and work orders implemented.
We can quickly compute metrics on the progress and easily identify
problem areas.

Here again, people don't have to do anything special: the accuracy, time-
liness and completeness of the measurement data is derived from the
fact that it is tied directly to work processes.

Lesson 17. Periodic SEE surveys are essential to the organization’s SEE im-
provement cycle.

Active process improvement and SEE improvement programs are central to
megaprogramming. To identify needed improvements, the SEE’'s end-
users must be regarded as customers. We have conducted two SEE sur-
veys to date. Feedback was sought on individual tools, SEE integration
among the tools, and system management support responsiveness.
[DemExp95] contains an extensive appendix discussing our survey tech-
niques, which included innovations on assessing tools as well as on de-
termining high-payoff opportunities for improving integration.

The following are some of the survey findings:

Users felt the SEE’'s functionality was adequate for their work and
“headed in the right direction”.

The areas of tool functionality that were deemed “strategic” to the proj-
ect’s long term objectives were:

— Ada software production (currently supported by Rational Apex and
related tools)

-~ Architectural infrastructure support (currently addressed by the RICC
tools)

— Object-oriented and information modeling (currently addressed by
ROSE and Teamwork/IM)

— Metrics

— Process definition (currently addressed by ProDAT and PEAKS).

— Documentation and automated documentation production (currently
addressed by FrameMaker and SoDA)

e The areas of SEE integration that were deemed “strategic” were:

Configuration management - with most other SEE areas

Project management - with most other SEE areas

Metrics - with most other SEE areas

Object-oriented and information modeling - with document produc-
tion and Ada software production

Ada software production - with architectural infrastructure tools and
software certification

Process modeling - with project management and process execu-
tion

Based on the analysis of the survey results, the following survey improve-
ments will be taken into account for the next survey:

e A larger cross-section of the end-user population will be surveyed (40%
vs 25%).

e Additional judgments will be requested to enhance the survey’s utility in
deriving metrics. For example, people were asked to assess the im-
portance of functionality groupings to their own jobs; they should also be
asked to estimated the importance to the future product-line objectives.

e Users will be asked to rate the value of the survey itself - as well as to
provide suggestions for improvement.

e Outside consulting will be sought to review survey techniques and rec-
ommend improvements.

5. MEGAPROGRAMMING AND SEE INTEGRATION

5.1 VIEWING THE SEE AS AMEGAPROGRAMMING PRODUCT LINE

Although this paper is primarily an experience report, the authors’ reflection
has led us to an interesting extension of the megaprogramming approach - an ex-
tension that has helped us to better understand our own Demonstration Project ex-
perience, and one that may be of use to others in plotting the course for their SEE.
The realization is this: the SEE itself is a product-line and is as much subject to
megaprogramming principles as the applications it supports.

Consider that the fundamental intent of megaprogramming is to enable sys-
tematic reuse across a product-line of applications - applications that are under the
control of a single domain manager, and whose natures are similar enough to merit
a common engineering approach. As shown in Figure 2, it is natural to think of the
organization’s SEE assets as several logical SEEs - even if they share many of the
same physical assets (workstations, software licenses, network connections, etc.).
In effect, each application has its own supporting SEE.

Provides auj{omateg! assistance
for the creation, maintenance, and
application of engineering assets _,

Domain-bevsl

Application-Level

Figure 2. A Product-Line of SEEs in Support of a Product-Line of Appli-
cations

Although we want the maximum commonality across this group of SEEs - just
as we do with a product-line of applications - we also acknowledge that there are
unique aspects of each. For example, for a SEE supporting a space catalog mainte-
nance application, we may need capabilities which are not needed for a missile

24

warning application - such as a special orbital mechanics analysis support package,
or a Prolog engine to support rule-based artificial intelligence research. In addition,
although the megaprogramming processes for each application follow a common
process architecture, each application has its own nuances - thus each SEE must
support a tailored rendition of the common process.

5.2 2PPLYING MEGAPROGRAMMING DISCIPLINE TO THE SEE

Since there does appear to be a product-line of SEEs, the natural question is:
do megaprogramming principles apply to developing, maintaining, and evolving the
product-line? Although space does not permit a detailed analysis here, the answer
appears to be yes, as illustrated in Table 4.

Megaprogramming

Principle Applicability to SEE Product-Line

¢ Domain- + Domain requirements established by Application Product-line’s common process
Specific framework and need for automated support; domain engineering is appropriate to
Reuse establish domain models, etc., for the SEE Product-Line.

e Common SEE architecture framework (see Table 5) to maximize potential for reuse
e Common artifact management strategy, CM strategy (including reuse library)

e Common toolset, minimizing license costs, minimizing training costs, enabling
maximum use of common integration

e« Common toolset tailoring and integration approach, with process for product-line
adaptation of common scripts and data

¢ Systematic e View application product-line’s processes as integral to the SEE

Process
e Use formal processes for SEE procurement, SEE engineering, SEE assembly and

installation, SEE management (problem and work item tracking) - and SEE im-
provement (including survey techniques)

e Automated e Automated tracking tool to assist with SEE administration

Support . .
e Commercial GUI builder for locally-written applications

¢ Commercial integration framework services

Table 4. Applicability of Megaprogramming Principles to SEE Prod-
uct-Line

To reiterate, although this discussion shows that a product-line mentality is
highly appropriate to the SEE product-line, it is only on reflection that our group has
come to this realization. For example, we did not start the Demonstration Project with
a concerted effort to plan out our SEE using domain engineering. As it turns out,
however, we now can see that we have been using product-line thinking as we de-
cided what hardware to acquire and which tools were strategic.

For example, Table 5 illustrates how our current SEE exhibits architectural
characteristics that provide a good foundation for domain-specific reuse for the SEE
product-line.

Architectural SCAI SEE Domain
Characteristics Example Sub-Categories Implementation Examples
e Layered architec- e Common underlying operating e Unix, TCP/IP, NFS, X
ture system environment
e Process support environment e STARS PSE
e Major functionality encapsula- e Rational’s integration family of Ada
tions support tools (centered around
Apex)

e TRWs integration family of code
generation tools supporting the ar-
chitectural infrastructure (UNAS,
RICC)

e Common user in- e Common window-handling ¢ Motif
terface :
« Common window behavior look ¢ Open Interface (from Neuron Data),
and feel Display Builder (from TRW)
¢ Common program o Low-level API services e Broadcast Message System (part of
interface mecha- HP’s SoftBench)
nisms

e TCP/IP Sockets (for guaranteed
message delivery)

e High-level data repository ¢ COTS DBMSs (Oracle, Sybase)
services
e Component reuse ¢ COTS tools e Various

Table 5. Architecture Characteristics for the SEE Product-Line

Our intent here is not to say we have done a remarkable job of megapro-
gramming for the SEE (after all, we are only supporting a single application so far),
but rather to say we believe megaprogramming applies to this product line.

As we learn more about how to do megaprogramming, we look forward to ap-
plying the improved techniques and practices to the SEE product-line as well.

5.3 AKEY INTEGRATION LAYER: THE PROCESS SUPPORT ENVIRONMENT

Figure 3 illustrates how each of the three megaprogramming technology
thrusts is brought to bear to engineer the product-line SEE. The SEE is depicted in
the center of the diagram as two layers - a key architectural viewpoint that is elabo-

Figure 3. The Motivation for a PSE Encapsulation Layer

rated below.

A key consequence of this line of reasoning is the identification of an
“encapsulation layer” that can be instrumental in SEE integration: the Process Sup-
port Environment (PSE). As depicted in Figure 4, the PSE is a set of tools and asso-
ciated data that allows an organization to define, carry out, and improve its process. It
also serves as an integration vehicle for orchestrating the rest of the SEE.

27

i=

Process ~
Engineer

Software Engineering Environment

A Prbcess-Driven
SEE Functionality

Organization’s
Process

Tool, Aftifact
Bindirlags

End User

Engineer

Figure 4. Conceptual Mode! for a Process Support Environment En-
capsulation Layer

The result is a unique form of integration: process is integrated with the SEE,
and the encoded process is then integrated with the rest of the SEE'’s tools and arti-
facts. Thus, two types of integration are occurring simultaneously.

Figure 5 shows how the PSE layer fits in context with an abstract architecture
for the SEE - depicted in terms of several other possible encapsulation layers that
can be called upon to carry out process functions.

Figure 5. SEE Encapsulation Layers

Figure 6 illustrates the PSE currently in use on the Demonstration Project.

Top-level
Schedule

B

Tool Usage Metrics

Process Performance
Management

Manual

Key:
Autornated Support

Figure 6. The Demonstration Project Process Support Environment

The PSE layer includes the STARS-sponsored tools PEAKS, ProjectCatalyst,
and Amadeus. PEAKS is used to model the process using a graphical ETVX' nota-
tion and to construct a process-driven plan for the project. ProjectCatalyst [ProjCat94]
is used to support the coordination and execution of the process-driven plan. To pro-
vide this support, ProjectCatalyst imports the PEAKS plan and presents it to task
leads as a hierarchy of process component “pages”. The pages list the work tasks,
inputs, outputs, verification points, and lower-level process components called for by
the process-driven plan. The task leads use these pages (which look much like
spreadsheets) to dispatch tasks to engineers and to monitor status. They can also
refine the pages to add additional steps not part of the formal process. As each task
is dispatched to the designated engineer, ProjectCatalyst supplies a “work context” to
Process Weaver, providing the engineer with convenient access to the artifacts (files,
etc.) and the SEE tools to be used for the task. As tasks are completed and mile-
stones are reached, status is reported dynamically to the PEAKS planning database -

4
ETVX - Entfry, Task, Validation, eXit - a notation for depicting process sequencing.

providing managers with up to the minute status of project activities. This closed-loop
SEE mechanism assures the project that its work is taking place in accordance with
the process and that status information is based on completion of prescribed valida-
tions. Further, as key points in the process execution are reached, measurement
data (such as labor hours, elapsed clock time, automated quality measures, efc.) is
captured in the Amadeus database, assuring that resulting metrics are similarly
based on actual work processes - and allowing analysts to derive credible informa-
tion to assist with process improvement.

The basic usage paradigm supported by the STARS PSE toolset seems
promising to the end-users. Based on survey feedback, task leads seem at home
with ProjectCatalyst’'s concise spreadsheet-like way of viewing their delegated work
in progress and appreciate the automatic reporting of status based on the engineer-
ing work starts and stops. Engineers have indicated that they appreciate the struc-
tured way their tasks are maintained in Process Weaver agendas, as well as the
ability to quickly navigate to their work product files from their work contexts.

As discussed in the Lessons Learned section, however, there are still imple-
mentation difficulties with the current tools that would have to be overcome before
they could be considered for production use. As of this writing, while PEAKS is near-
ing commercialization, it appears that ProjectCatalyst will remain a prototype imple-
mentation. Current plans are to implement some of the ProjectCatalyst functionality
in PEAKS and to continue to assess other avenues for supporting the automated en-
actment aspects of the PSE.

Although much work remains to fully realize a Process Support Environment,
experience to date demonstrates the viability of the ideas. Interested readers should
refer to the paper “Using Process to Integrate SEEs” [Randall95], also published in
these proceedings - which further elaborates the motivation for the PSE layer, pro-
vides a model for its structure and interfaces, and discusses a number of lessons
learned specific to integrating process and SEE.

To dramatize the relevance and timeliness of this work, the April, 1994 STSC
Report on SEE Technology [STSC94] identified seven key SEE technology areas that
have received insufficient attention to date and in which the industry now seems
postured to make significant progress. Of these seven areas, the top three were
process modeling, process definition, and process enactment and enforcement. The
PSE encapsulation layer addresses all three of these areas.

6. CONCLUSION

We have used the three megaprogramming technology thrusts - domain-
specific reuse, systematic process, and automated support - as the basis for organ-
izing this paper. The Air Force/STARS Demonstration Project is in the midst of transi-
tioning megaprogramming into practice, with the intent to parley the SCAI application
into a product-line of similarly constructed systems. Although the team has been
grappling for two years on how to build product-line applications, it was not until re-
cently that it occurred to us to apply megaprogramming to the Software Engineering
Environments supporting those applications.

In retrospect, this is no great revelation. In a product-line organization, each
unique application will be built using a unique SEE. In both cases, however, our ob-
jective is to seek out - and exploit - commonality, to allow the systems (applications
and supporting SEEs) to be constructed, maintained and evolved with maximum effi-
ciency. Thus, to effectively support an application product-line, we believe a me-
gaprogramming organization must engineer a SEE product-line.

We have used this thought pattern to re-examine the lessons learned in the
SEE section of the most recent Demonstration Project Experience Report
[DemExp95]. This paper cites 26 SEE lessons that we believe are relevant to organi-
zations transitioning to megaprogramming - and elaborates 17 of them in some de-
tail. It should be noted that many of the lessons are not unique to transitioning to me-
gaprogramming - they apply equally well to organizations undergoing significant
change to their business paradigms and wishing to transform their SEEs as well as
their processes.

We closed the paper with a reflective section on megaprogramming and SEE

integration, which we hope lays some of the theoretical groundwork for a more formal
development of how to apply megaprogramming principles to the SEE product-line.

We intend to pursue the following during the remainder of the Demonstration
Project and beyond:

o Further definition of theory and practice for a SEE product-line - notably
domain engineering of the SEE domain;

o Further refinement of process and SEE integration - as introduced in
Section 5.3, on page 27, and as discussed in detail in [Randall95], also
published in these proceedings;

. Additional integration initiatives for the SCAI SEE - notably in the areas
of process-driven project management, configuration management,
metrics, and engineering artifact interrelationships;

o Evaluation of emerging SEE integration technology - such as Sun’s
ToolTalk and the Common Desktop Environment - with the intent of set-
ting long-range SEE evolution priorities; and

o Participation with other SWSC groups - to communicate our approach,
understand their approaches, and develop a unified SEE strategy
across the organization.

31

[Bristow95]

[Brown92]

[Bulat95]

[DemExp95]

[NGCR93]

[NIST93]

[ProjCat94]

[STSC94]

[SchMel92]
[ToolTalk94]

[Trimble94]

REFERENCES

Bristow D.J., Bulat B.G., Burton R. Product Line Process Develop-
ment, Proceedings Seventh Annual Software Technology Conference,
Salt Lake City, UT, April 1995. (Published simultaneously with the pre-
sent paper)

Brown, A. W, Earl A. N., and J. A. McDermid, Software Engineering
Environments: Automated Support for Software Engineering.
McGraw-Hill Book Co., UK, 1992,

Bulat B.G. SWSC Domain Engineering Experiences, Proceedings
Seventh Annual Software Technology Conference, Salt Lake City, UT,
April 1995. (Published simultaneously with the present paper)
AF/STARS Demonstration Project Experience Report, Version 2.0
(Draft), CDRL Sequence A011-002D, Electronic Systems Center,
AFMC, USAF, December 1994 (currently under review for comment by
the Government).

Reference Model for Project Support Environments, Version 2.0
(Draft), Next Generation Computer Resources, 2 September 1993.
NIST Special Publication 500-211, Reference Model for Frame-
works of Software Engineering Environments (Technical Report
ECMA TR/55, 3rd ed.), National Institute of Standards and Technology,
August 1993.

ProjectCatalyst Users Manual, Software Engineering Technology,
Inc., September 1994 (available upon request from SET, 2770 Indian
River Blvd., Vero Beach, FL 32960).

Hanrahan R., Daud C., Meiser, K., Peterson J. Software Engineering
Environment Technology Report, Software Technology Support
Center, OO-ALC/TISE, Hill AFB, Utah, April 1994.

Shlaer S., Mellor S.J. Object Lifecycles, Modeling the World in
States, Yourdon Press, 1992.

Common Desktop Environment: Getting Started Using ToolTalk
Messaging, Sun Microsystems Inc., Mountain View, CA, 1994.
Trimble J. (ed.), STARS Program History 1983-1993 Version 1.1,
available from the STARS Program Office.

AUTHOR BIOGRAPHIES

Dr. Richard L. Randall

Dr. Randall is currently working on the ARPA STARS program as the on-site
lead for the Air Force/STARS Demonstration Project at Peterson AFB, Colorado. He
provides consultation to the Air Force on megaprogramming technology transition
issues and on long-range strategies for enabling a future product-line for the Space
and Warning Systems Center. His area of technical focus on the Demo Project is the
integration of the Demo Project Software Engineering Environment - notably the as-
pects dealing with the organization’s process and artifact management.

Dr. Randall’'s research interests include software engineering methods and
integrated project support environments (IPSEs). He has over 25 years of experience
in all aspects of software engineering for large real-time systems on projects such
as Gemini, Apollo, Safeguard, Sea Nymph, and B2. During this time, he has focused
on the integration of methods and tools into the software process, and he has played
lead role in various division-level software and systems engineering steering groups.

Dr. Randall received a BS in Mathematics from MIT and a PhD in Computer
Science from UCSD. He is a member of the IEEE Computer Society and the ACM.

Robert W. Ekman

Robert Ekman is a Senior Programmer in the Loral Federal Systems, Systems
Technology and Products organization at Gaithersburg Maryland. He is currently lead
engineer for the internal System Development Environments project. Previously he
was a deputy architect on the [BM/Loral STARS program. Mr. Ekman has worked
much of his thirty year career in software development environments and tools. He
has been continuously involved in emerging software technologies. Recently, he has
focused on development environment integration standards and techniques, and
their relations to development processes.

Mr. Ekman received a BA in Physics from Gettysburg College. He is a mem-
ber of the IEEE Computer Society and the ACM.

Captain Scott P. Kent, USAF

Captain Kent has over five years experience working for the U.S. Air Force on
several command and control software development projects, including two years as
a programmer. During this time he has devoted much of his attention to various as-
pects of software engineering environments - including selection, acquisition, inte-
gration, and management. Until April 1, 1995, Captain Kent was the Software Engi-
neering Environment Team Lead on the AF/STARS Demonstration Project, which is
demonstrating ARPA STARS megaprogramming technologies. He recently moved to
Hanscom AFB working in the AWACS program office.

Captain Kent received a BS in Computer Science from the University of New
Hampshire and is currently pursuing a Masters in Software Engineering from Colo-
rado Technical College.

Gary S. Turner

Gary S. Turner has 14 years of experience in all aspects of software engi-
neering, including real-time systems, simulation, and software engineering environ-
ments. Mr. Turner is currently working on the ARPA STARS program and is an on-
site representative supporting the demonstration of STARS megaprogramming tech-
nologies on a real DoD (Air Force) project. He has been working on the STARS proj-
ect since its inception, and has contributed in the areas of software reuse, software
engineering environments, and process-driven development. Currently his work fo-
cuses on the development and integration of process support tools.

Mr. Turner received both a BS and an MS degree in Information and Computer
Science from Georgia Tech, with a masters thesis on the subject of rapid prototyping.

108l0.14
uonelisuowa
SdV1S/82104 Iy

suionsis esopos lauin] Alen
(o oy |
el 4v¥SN ‘uay 10og 1den
uewy3 uaqoy
llepuey pJeyaly "Iq

G661 |udy || ‘Aepsany
sjuswuolianug Buesulbug arem)os - || MYoel|

8oualsjuo) Abojouyos| alem)jos jenuuy yi/

PAOUIBRST] SUOSSOT
:Bulwwrelboidebay 10} 335 e Buneibayu,

2 - lauin Auayjueuwn3 iepuey

G661 |Udy L1

uoISN[ouU0N

uoljeibeiu] 333 pue Bulwweiboideba
pauUIBaT] SUOSSOT
333 108[044 uoneisuowa(

IX8}U0D

SUIINO

€ - lawn | ua)j/uewn 3/ jepuey G661 IMdy L1

UOIJBPUNO,] QUI'T-1ONPOIJ e aouarradxy 109[01d 8oy o
uoned1[ddy Surjiom « AZoouyd9], paouryuy«

AINJONISBIJUT [RINIONIYIIY o _ AZo1ouyda], XIV/DSI +
osTIad X urewio(J« A3o10uyda], SYVISe
A3o1ouyds], CSMS+

drysiauang owaq SYV.ILS/AV

¥ - JouIn | JusYj/uewy3/epuey 661 udy |1

Aypqereds pue ‘Apiqerar Ayfiqesdepe ‘Aypiqesod ur jusweaoidwi snonupuoy) e
sardojouypay mau Juperodioour 105 yoreordde sjqeidepy o

Niomawrely anja3ydre uado uodn paseg

HAS © ul padexdeJ 9snay[/SSaD0L] e

pajroddng AGojouday,

syonpoid pue
sass3201d 9snar ur Juswasoxrdur
snonuguod syroddng

1onpoid pue ssadoxd
ur juswdaorduag snonupguod syroddng e

d . syejnIe
51003 4q payioddng 3[2AD-3J1] [[€ OPNOULI S}SSY o
MIOMWES] S9JOW0L] - s10558
ﬂmow yum.ﬁo.& }saux 03 miﬂmmﬁx\ - a[qesnal woy ﬁmeQEOU mﬁﬁm&m .
syusuodwod 3IN3dMPIE

ssaooid s[qesnar woy padofeasq - urewop uonedijdde uo paseg

ssadoxd pauryap e £q pspmo) ‘ssado1d asnar £q popIine) e

paseg-asnay symadg-urewro(g
UDALI(]-SSII0I]

#SPEIYYOEI,, UI'T-PNPOI YsI[qeisy
duddxy uren
AN[IqeIA djerjsuourd(q S[e0D)
UORISUEL], 93eId[00Y :NOISSIN
suonjedfddy Jo soury-pPnpoiJ JUSNLHYIT NOISIA

SUNUWDAS0LADSIN D SH VIS

SWd)SAS |esapad

BA4{- =

§ - Jauin] Jusyj/ueuni3 jepuey 5661 udy |1

OH 3jpuIajly 3jiqow DNID

HVIND @\

(uoypjauo))

(osuodsay) uipjUNOW auaiayd (uoyoajaq juanyz)
slas SIOsuag

SWaISAS 10ID)7 SVIND
poddng :uoisSiy qSMS =z

9 - Jauin | Juayj/uew 3 jrepuey

G661 udy 11

SI19)a0ddng pue SIYIYIepL SIJV

Buipgey s3dssay
sjudwuoaisuy jroddng axemijog xadwo)) .

spusuodwo)) aaem)Jog 29 drempaef Lrejpridos «
3PO)) JO SAUI'T 000°000°CI

sagenduery 17 «

sudysAg [euoneradQ ajeaedag pe .

sadidaaogg ay Suyvuiuig

SJUWIINIS WII]qO4] =

L - Jauin] pusyj/uews3/jepuey 5661 [udy |

poddng pajewoiny e

SS900.1d o
ashay o1}08dg-urewo(] «
110} sisegq

9JN}08)IYDJY BUIT-10NP0Id

SWasAs [esapay

B4 =m

g - lauin auej/uewn3/jepuey G661 Udy |1

SHYVY3d SHV3d
1vaoid ssedwod/1 VO

(1eneep\ SSB01d
1sAjereniosloid

OAIND [euoleY
OAWD Wel|

SHMv3d
shepewy

s|00] Ung
leyelwatuel4

e

vaos
leyewewel 4

Ayued™ 35100}

WipHomwes |
esoy

IOH

SAvA 37VS
xedy s|001 DOIH

33S 109loid owe(

sWId)sAS |esepay

wvalon

6 - JauIn] usyy/uewy I Jepuey 661 Uy ||

asiyadxe peoueyugy —
.U0I11081I(] poox) .b__mco:oc:n_ alenbepy, J3S —
m.mw.@ uoljewolne ssaoo04d ul speouu| —

ae S19S|00] mo:oma-mr_io-myﬁm —

SjuaWysI|dwoody e

soAlloalqo 33S onsljealun —
d14S pPaljisse|) —
fe.) Uolesedss |eojydelsbosr) — %
yoeoudde Buinjone Apidey — ..
Joalls Aem-om} e :uoisues| ABojouyos| —

S)O0|gpeoy o

Sjuswysljdwoooy
pue s)o0|gpeoy TeIa

0L - Jauin | uay/uews|3/lepuey 5661 udy ||

uonisuel | ABojouyoo| e
JuswanoIdwW| J3S e
uoneibolu] 333 e

UOI}08|9S |00] pue WIoje|d e
9INOBUYDIY J3S
Juswabeue J3S
Buesulbug urewoq e

sallobalen uosso

swa)sAs [esapoay

BAv{- =

L1 - Jauin] Auayuewy 3 /jiepuey

G661 |udy LI

Aloyepuew si yoeoidde jejuswalou]
pepasu Jasulbus 335 pajora(

papaau 1ezd, 335

s|o00} abps Buipes| Jo JequinN —

oebueyo Jo saibaq —

SSIlAIIOB |edluYyO8l-uouU JO |BA3] paldadxaufn

Sjuswalinbal 335 Bunenion|4

Juswabeue 339

21 - Jauwin] puayyuewy 3 |jepuey

G661 |Udy L1

.20pa Buipag|q, oL
Bunojid Jo - 1809 pue - AlISS808U aU
swJiojre|d snosuaboialay Jo anjeA uspply oL

UOI109|8S |00 | pue wJioe|d

swidyshs |esapay

valon

€1 - lauin | Auayyuew 3 lepuey G661 (Mdy |1

Buibessaw eiA uoneibajul |0J1U0D Ul S|lejld e
wo|qold aAiseAlad e - seseqeiep o|diyN e
SOBIN —
SS900.1d —
Juswebeuew joejiuy —

:SONSS| |BOIUYDD] |BJOAIH o
SI0PUBA 185|001} paubife, JO anjep e
sebueyd ainjonisedul Jo 10edw| e
soisibol jo 10edw| e

uoleibslu| 3335

Swia)sAs |esapay

BA{- =m

¥1 - Jsuin] nuayjuewngjiepuey G661 [udy L1

uonelibeiul g sapjIqede [enpiAlpul :SABAING
SOLI}8W JOJ [BYIA :S8SBQRIEP UBALIP-SS820id
SIOPUBA 0] Yoeqgpas- —

siopJo yiom 333 bBuibeuepy —
seouslladxs ‘swa|qold ‘senssi ‘swall Uonoy —

wiolsAs Bupjoel; apim-100[0id e

lJuswanoldw| 339

Gl - Jouin] Aus)j/ueun3/jepuey 5661 udy |1

33S 9y} o) buiwwesboidebopy BuiA|lddy e
HSUIN-PNP0Id 33S,, OYL

uonesbelu| 335
pue bulwweiboidebay

91 - Jauin| Ausd)/uewr3/jepuey G661 udy LI

[onaT-uoneslddy

| uoneol|ddy 4o} 335

N S=)

| uoneoyddy

0
© <
2 2%
< 1 <
o “._v S m =
ci{im cEa
. DO b=
olP> = o
2|8 3ot
[
=le $8859001d 33S » =05
ol a—
_mmmwmom_n_ Bunesulbug « & (7] ‘SpOLIOp UONBIBaI| « oS 5
mEmco. W0 UOWWOD « ‘$195100] ‘8IN08IYOIY 0355
S|OPON UlBWOQ o 850
co o
w.e's

Josse Buussuibus jo uoneoidde |[9ADTT-Ulewlod
pue ‘eoueusjuiew ‘uolieald ay} 1o}

90UB]SISSE pajewolne Sepinoid

IVDS ul]-jonpold 34S 8yl

SUVISHAV

Ll - Isuin] uajjjueuni3 /jepuey G661 (Udy LI

43S
SuITl-1NPOId.

o A
. S
. e

SWIR)SAS |esapay

\wvalon

81 - Jauin | AuaYj/uewn T jlepuey 661 udy |1

siaAe] |[einjoslyoly 333

suiaysAs [esspay

walo™

61 - Jauin | Juayj/uBu T /j|epuey G661 Mdy LI

laauibug
33S

lesn pug

m sBuipuig
m Hom“—_t< .-OOl_l
Awreuonound 335
USALIJ-SS8201d 580001
: .S,uonezijuebio

..

mec_mcm

EmEcQScm_ Buussuibug m:m\stom i, SS800.4

uonielbslu| 3335/sS900.d

swIayshs [esapay

walon

02 - 1auin | Jusyj/uewy/jlepuey G661 udy |1

woddng pereuroiny
[BUUBJ = = = = = = 4O

NIsua3eue
9DUBULIOJIDJ SS3D01]

OIA a8es] [ooL

——t

FDIA 9[npayog ‘10qer]

SN3pvid
BUI[JOT U0 prity __
“BULI0jTUON A
Buruue PRy
alorg

NPafoS USALI(]-SS300I

e
ol
1=

Burppoy

IMpPAYS $89001]

1Pasl-dog,

35d IVOS 3yl

SWId)SAS |esdpdy

BAv{-=m

L2 - Jeuin| uadj/ueuni3 epuey G661 udy ||

Bulwwelboidebow 333 jo Alosy) Buidojaasp enupuon —

ABojopoyew uonewolne sseooid Bujuyas enupuoy —

ABerelis 333 epim-uoneziuebio Bunenwio; ur syedioiued —

ABojouyos} 335 Buibisws - epinb pue - mojj04 —

uoneibsiul 333 YOS 01 Sjuswanoidwl BAIIDBI8S OXeN —
SUB|d e

LQull-1onpoid 333, Jo uoniuboosy -

uoljewolne sse504d ui speoJu| —

uonoalIp ‘Alyjeuonoun) 33S s|geIA —

abueyo Jo 1spiw 8y} ul s335 Buipjing ul eousuedxy —
S1INSeY

uoISN|oUON

